Singular Moser-Trudinger inequality with the exact growth condition on hyperbolic space

نویسندگان

  • Zhao Liu
  • Lu Chen
چکیده

In this paper, we are concerned with a singular version of the Moser-Trudinger inequality with the exact growth condition in the n-dimension hyperbolic space [Formula: see text]. Our result is a natural extension of the work of Lu and Tang in (J. Geom. Anal. 26:837-857, 2016).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trudinger-moser Inequality on the Whole Plane with the Exact Growth Condition

Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to L∞. It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modified versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions...

متن کامل

A Moser-trudinger Inequality for the Singular Toda System

In this paper we prove a sharp version of the Moser-Trudinger inequality for the Euler-Lagrange functional of a singular Toda system, motivated by the study of models in Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well as that in [23] for the regular Toda system. We expect this inequality to be a basic tool to attack variationally the existence problem...

متن کامل

2 1 Se p 20 09 On a version of Trudinger - Moser inequality with Möbius shift

The paper raises a question about the optimal critical nonlinearity for the Sobolev space in two dimensions, connected to loss of compactness, and discusses the pertinent concentration compactness framework. We study properties of the improved version of the TrudingerMoser inequality on the open unit disk B ⊂ R2, recently proved by G. Mancini and K. Sandeep [13]. Unlike the original Trudinger-M...

متن کامل

Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere

We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for general spectrally defined operators on the space of CRpluriharmonic functions. We will then obtain the sharp Beckner-Onofri inequality for CR-pluriharmonic functions on the sphere, and, as a consequence, a sharp logarithmic Hardy-Littlewood-Sobolev inequali...

متن کامل

A Sharp Form of the Moser-trudinger Inequality on a Compact Riemannian Surface

In this paper, a sharp form of the Moser-Trudinger inequality is established on a compact Riemannian surface via the method of blow-up analysis, and the existence of an extremal function for such an inequality is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017